Features - Operating Data Rate up to 10.3Gbps - 1310nm DFB-LD Transmitter - Distance up to 10km - Single 3. 3V Power Supply and TTL Logic Interface - Duplex LC Connector Interface - Hot Pluggable - Operating Case Temperature Standard: 0° C~+70°C Industrial: -40°C~+85°C - Compliant with MSA SFP+ Specification SFF-8431 - Compliant with IEEE 802.3ae 10GBASE-LR - Compliant with IEEE 802.3ae 10GBASE-LW - Digital Diagnostic Monitor Interface Compliant with SFF-8472 ### **Applications** - 10GBASE-LR at 10.3125Gbps - 10GBASE-LW at 9.953Gbps - Other Optical Links # **Description** POFLink's PSFP-10G-LR 10Gb/s SFP+ transceivers are designed for use in 10-Gigabit Ethernet links over multimode fiber. They are compliant with SFF-8431¹, SFF-8432² and IEEE 802.3ae 10GBASE-LR/LW³. Digital diagnostics functions are available via a 2wire serial interface, as specified in SFF-8472⁴. ## **Ordering information** | Part No. | Data Rate | Laser | Fiber Type | Distance | Optical Interface | DDMI | |-------------|-----------|---------------|------------|----------|-------------------|------| | PSFP-10G-LR | 10.3Gbps | 1310nm
DFB | SMF | 10km | LC | YES | ^{*} I--- Industrial operating temperature ## **Regulatory Compliance** | Feature | Standard | Performance | |-------------------------|---------------|--------------------| | Electrostatic Discharge | MIL-STD-883G | Class 1C (>1000 V) | | (ESD) to the | Method 3015.7 | Class 1C (>1000 V) | #### POFLINK SFP-XFP LLC | Http://www.sfp-xfp-mod | Experts in Fiber Optic Transceivers | | |--|--|--| | Electrical Pins | | | | Electrostatic Discharge to the enclosure | EN 55024:1998+A1+A2
IEC-61000-4-2
GR-1089-CORE | Compliant with standards | | Electromagnetic
Interference (EMI) | FCC Part 15 Class B
EN55022:2006
CISPR 22B :2006
VCCI Class B | Compliant with standards Noise frequency range: 30MHz to 6GHz. Good system EMI design practice required to achieve Class B margins. System margins depend on customer host board and chassis design. | | Immunity | EN 55024:1998+A1+A2
IEC 61000-4-3 | Compliant with standards. 1KHz sine-wave, 80% AM, from 80MHz to 1GHz. No effect on transmitter/receiver performance is detectable between these limits. | | Laser Eye Safety | FDA 21CFR 1040.10 and 1040.11
EN (IEC) 60825-1:2007
EN (IEC) 60825-2:2004+A1 | CDRH compliant and Class I laser product. TüV Certificate No. 50135086 | | Component Recognition | UL and CUL
EN60950-1:2006 | UL file E317337 TüV Certificate No. 50135086 (CB scheme) | | RoHS6 | 2002/95/EC 4.1&4.2
2005/747/EC 5&7&13 | Compliant with standards*note2 | Note2: For update of the equipments and strict control of raw materials, POFLINK has the ability to supply the customized products since Jan 1st, 2007, which meets the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union. In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes. In light of item 7 in RoHS exemption list of RoHS Directive 2005/747/EC, Item7: Lead in high melting temperature type solders (i.e. lead-based alloys containing 85% by weight or more lead). Lead in solder for servers, storage and storage array systems, network infrastructure equipment for switching, signaling, transmission as well as network management for telecommunications. Lead in electronic ceramic parts. In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for POFLINK's transceivers, because POFLINK's transceivers use glass, which may contain Pb, for components such as lenses, windows, isolators, and other electronic components. ## **Product Description** The PSFP-10G-LR series single mode transceiver is small form factor pluggable module for bi-directional serial optical data communications such as IEEE 802.3ae 10GBASE-LR/LW. It is with the SFP+ 20-pin connector to allow hot plug capability. This module is designed for single mode fiber and operates at a nominal wavelength of 1310 nm. The transmitter section uses a 1310nm multiple quantum well DFB laser and is a class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC. ### **Absolute Maximum Ratings** | Parameter | Symbol | Min. | Max. | Unit | |---------------------|-----------------|------|------|------| | Storage Temperature | Ts | -40 | +85 | °C | | Supply Voltage | V _{CC} | -0.5 | 3.6 | V | ## **Recommended Operating Conditions** | Parameter | Symbol | | Min. | Typical | Max. | Unit | | |----------------------|--------------------|-------------|------|---------|------|-------|--| | Operating Case | T _A | PSFP-10G-LR | 0 | | +70 | °C | | | Temperature | , , | | | | | | | | Power Supply Voltage | V _{CC} | | 3.15 | 3.3 | 3.45 | V | | | Power Supply Current | I _{CC} | | | | 300 | mA | | | Surge Current | I _{Surge} | | | | +30 | mA | | | Baud Rate | | | | 10.3125 | 10.5 | GBaud | | # **Performance Specifications - Electrical** | Parameter | Symbol | Min. | Тур. | Max | Unit | Notes | | | |-----------------------------------|--------|------|------|---------|------|-------------------------|--|--| | Transmitter | | | | | | | | | | CML
Inputs(Differential) | Vin | 150 | | 1200 | mVp | AC coupled inputs | | | | Input Impedance
(Differential) | Zin | 85 | 100 | 115 | ohm | Rin > 100 kohm
@ DC | | | | TX_DISABLE Input Voltage - High | | 2 | | 3.45 | V | | | | | TX_DISABLE Input Voltage - Low | | 0 | | 0.8 | V | | | | | TX_FAULT Output Voltage - High | | 2 | | Vcc+0.3 | V | Io = 400µA; Host
Vcc | | | | TX_FAULT Output
Voltage - Low | | 0 | | 0.5 | V | Io = -4.0mA | | | | Receiver | | | | | | | | | | CML Outputs | Vout | 350 | | 700 | mVpp | AC coupled | | | ### **POFLINK SFP-XFP LLC** Experts in Fiber Optic Transceivers | Fittp://www.srp-xrp-modules.com | | | | | | | | | |---------------------------------|------|-----|-----|---------|---------|------------------|--|--| | (Differential) | | | | | | outputs | | | | Output Impedance | Zout | 85 | 100 | 115 | ohms | | | | | (Differential) | 2001 | 00 | 100 | 113 | Offilis | | | | | RX_LOS Output | | 2 | | Vcc+0.3 | V | lo = 400μA; Host | | | | Voltage - High | | 2 | | VCC10.5 | v | Vcc | | | | RX_LOS Output | | 0 | | 0.8 | V | lo = -4.0mA | | | | Voltage - Low | | U | | 0.8 | V | 104.0111A | | | | MOD_DEF (0:2) | VoH | 2.5 | | | V | With Serial ID | | | | | VoL | 0 | | 0.5 | V | Willi Selial ID | | | # **Optical and Electrical Characteristics** | Parame | Symbol | Min. | Typical | Max. | Unit | | | |---------------------|------------------|------------------------|---------|------|----------------------|-----|--| | 9µm Core Diam | | | 10 | | km | | | | Data Ra | | | 10.3 | | Gbps | | | | | | Transmitter | | | | | | | Center Wave | elength | λ _C | 1270 | 1310 | 1355 | nm | | | Spectral Width | (-20dB) | σ | | | 1 | nm | | | Average Outpu | ut Power | P _{out} | -8 | | +0.5 | dBm | | | Extinction F | Ratio | ER | 3.5 | | | dB | | | Average Power of Ol | FF Transmitter | | | | -30 | dBm | | | Side Mode Suppre | ession Ratio | SMSR | 30 | | | dB | | | Input Differential | Impedance | Z _{IN} | 90 | 100 | 110 | Ω | | | TX Disable | Disable | | 2.0 | | Vcc+0.3 | V | | | I A Disable | Enable | | 0 | | 0.8 | | | | TX Fault | Fault | | 2.0 | | V _{CC} +0.3 | V | | | I A Fauit | Normal | | 0 | | 0.8 | , v | | | TX Disable Ass | sert Time | t_off | | | 10 | us | | | | | Receiver | | | | | | | Center Wave | elength | λ_{C} | 1260 | | 1565 | nm | | | Sensitivi | ity | PIN | | | -14 | dBm | | | Sensitivity in | OMA | PIN | | | 12.6 | dBm | | | Output Differential | P _{IN} | 90 | 100 | 110 | Ω | | | | Receiver Ove | P _{MAX} | 0.5 | | | dBm | | | | Optical Retur | ORL | | | -12 | dB | | | | LOS De-As | LOS _D | | | -15 | dBm | | | | LOS Ass | LOS _A | -25 | | | dBm | | | | LOS | High | | 2.0 | | V _{CC} +0.3 | V | | | LUS | Low | | 0 | | 0.8 |] | | SFP+ Transceiver Electrical Pad Layout #### **Pin Function Definitions** | Pin
Num. | Name | FUNCTION | Plug
Seq. | Notes | | |-------------|---------------|------------------------------|--------------|--|--| | 1 | VeeT | Transmitter Ground | 1 | | | | 2 | TX Fault | Transmitter Fault Indication | 3 | Note 1 | | | 3 | TX
Disable | Transmitter Disable | 3 | Note 2, Module disables on high or open | | | 4 | SDA | Module Definition 2 | 3 | Note 3, Data line for Serial ID. | | | 5 | SCL | Module Definition 1 | 3 | Note 3, Clock line for Serial ID. | | | 6 | MOD-ABS | Module Definition 0 | 3 | Note 3 | | | 7 | RS0 | RX Rate Select (LVTTL). | 3 | This pin has an internal 30k pull down to ground. A signal on This pin will not affect module performance. | | | 8 | LOS | Loss of Signal | 3 | Note 4 | | | 9 | RS1 | TX Rate Select (LVTTL). | 1 | This pin has an internal 30k pull down to ground. A signal on This pin will not affect module performance. | | | 10 | VeeR | Receiver Ground | 1 | Note 5 | | | 11 | VeeR | Receiver Ground | 1 | Note 5 | | | 12 | RD- | Inv. Received Data
Out | 3 | Note 6 | | | 13 | RD+ | Received Data Out | 3 | Note 7 | | | 14 | VeeR | Receiver Ground | 1 | Note 5 | | | 15 | VccR | Receiver Power | 2 | 3.3 ± 5%, Note 7 | | | 16 | VccT | Transmitter Power | 2 | 3.3 ± 5%, Note 7 | | | 17 | VeeT | Transmitter Ground | 1 | Note 5 | | | 18 | TD+ | Transmit Data In | 3 | Note 8 | | | 19 | TD- | Inv. Transmit Data In | 3 | Note 8 | | | 20 | VeeT | Transmitter Ground | 1 | Note 5 | | #### Notes 1) TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. POFLINK SFP-XFP LLC Experts in Fiber Optic Transceivers 2) TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 - 10 \text{ K}\Omega$ resistor. Its states are: Low (0 - 0.8V): Transmitter on (>0.8, < 2.0V): Undefined High (2.0 - 3.465V): Transmitter Disabled Open: Transmitter Disabled 3) Modulation Absent, connected to VEET or VEER in the module. 4) LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K - 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V. 5) VeeR and VeeT may be internally connected within the SFP+ module. 6) RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 350 and 700mV differential (175 –350mV single ended) when properly terminated. 7) VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP+ connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 10hm should be used in order to maintain the required voltage at the SFP+ input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module. 8) TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 – 1200mV (75 – 600mV single-ended). **EEPROM** The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not write protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2H. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.2 ### **Recommended Circuit Schematic** ## **Eye Safety** This single-mode transceiver is a Class 1 laser product. It complies with IEC-60825 and FDA 21 CFR 1040.10 and 1040.11. The transceiver must be operated within the specified temperature and voltage limits. The optical ports of the module shall be terminated with an optical connector or with a dust plug.